An Empirical Evaluation of Suricata for Protecting
Vulnerable Web Application Servers

Zachary M. Etters
College of Information Sciences and Technology
The Pennsylvania State University
University Park, PA 16802

Alexander L. Borzillo
College of Information Sciences and Technology
The Pennsylvania State University
University Park, PA 16802

Krittanat Kulsakdinun
College of Information Sciences and Technology
The Pennsylvania State University
University Park, PA 16802
I

Abstract

This research project evaluates Suricata as an Intrusion Detection and Prevention
System (IDPS) by deploying it in a virtualized lab environment. This will enable
the research study to simulate real-world network cyberattacks and mitigations.
To achieve this goal, this research study implemented a pfSense firewall, a Damn
Vulnerable Web Application (DVWA) server, and a Kali Linux machine all within
a virtualized environment. These virtual machines will enable the research study to
generate realistic network traffic that can be used to test Suricata’s functionality.
This allows the research project to examine Suircata’s ability in detecting network
port scans, Denial-of-Service (DoS) attempts, and SQL injection exploits. This
research study’s findings showed that Suricata reliably detected network scans
and DoS attacks by default. However, SQL injection attacks required additional
configuration and a custom ruleset for alerting. These findings highlight both
the strengths and weaknesses of Suricata as an IDS and demonstrate the need for
continuous ruleset maintenance to ensure that Suricata functions correctly. The
findings also show that additional layers of protection are needed within production
network environments to ensure the safety of critical infrastructure.

1 Introduction

As the number of data breaches and cyberattacks increases each year, cybersecurity professionals
must be aware of potential tools that are available to them that will help prevent potential cybersecurity
attacks. These tools are extensively used in the information technology industry, and consequently, it
is important to gain practical experience using them. This research paper explores a specific category
of tools and implements them in a practical testing environment that emulates a real-world network
environment. By conducting research in this approach, we will gain practical experience using these

tools and be able to identify some of their strengths and weaknesses. Applying these tools in a
real-world environment will showcase the importance of intrusion detection systems in preventing
potential cybersecurity attacks.

One of the ways to prevent these potential cybersecurity attacks from occurring within your network
is by using intrusion detection. Intrusion detection is defined as a “process of monitoring the events
occurring in a computer system or network and analyzing them for signs of possible incidents, which
are violations or imminent threats of violation of computer security policies, acceptable use policies,
or standard security practices” (Scarfone & Mell, 2007, p. 15). Scarfone and Mell (2007) further
describe that these incidents are caused by “malware (e.g., worms, spyware), attackers gaining
unauthorized access to systems from the Internet, and authorized users of systems who misuse their
privileges or attempt to gain additional privileges for which they are not authorized” (p. 15). However,
not all incidents that are logged and monitored are malicious in nature (Scarfone & Mell, |2007)). It is
important that a cybersecurity professional can distinguish between these false positives and identify
the real threats. This process can be made easier by using an Intrusion Detection System (IDS).

2 Methodology

This research project evaluates Suricata as an Intrusion Detection and Prevention System (IDPS) for
protecting web application servers from common attack vectors. To achieve this, the study uses a
virtualized lab environment to simulate realistic network conditions and attack vectors. The purpose
of this methodology is to test Suricata’s detection capability with real-world attacks against web
application servers. However, in order for the study to be conducted, we must first build the lab
environment.

2.1 Lab Environment

To build out the lab environment, we are using VMware Workstation Pro 17 v17.6.4. This will allow
us to utilize a virtual, recreatable network environment to evaluate Suricata’s abilities. First, we
created a host-only virtual network, VMNet 12, within VMware Workstation. We configure that
virtual network by turning off the DHCP server and by giving that network the private IP address
of 192.168.99.0/24. By configuring these options, we gain complete control over how network
devices are addressed within that network. See Figure|[l]

Our next step was to install a pfSense virtual machine. We did so by grabbing the ISO online and
creating a virtual machine within VMware Workstation Pro. We changed the virtual machine type to
FreeBSD 10 and ensured that the VM had enough resources. We assigned the VM two CPU cores,
two gigabytes of RAM, and a 20-gigabyte hard disk. The VM was then assigned three network
adapters. The first network adapter is for the external-facing side or the Wide Area Network (WAN).
This adapter was configured to be NATed to the host’s network. The second network adapter is for
the internal-facing side or the Local Area Network (LAN) and is set to VMNet 12, which is the newly
created host-only network. The last network adapter is for Suricata so that it can monitor the network
traffic, and it is also set to VMNet 12. After the virtual machine was created and configured, we then
installed pfSense from the ISO.

The pfSense installation was left to defaults for the most part, aside from creating a user account to
log into. After pfSense was installed from the ISO, it rebooted, and we began configuring the network
interfaces. For the WAN interface, we let it grab the IP address and the default gateway from DHCP
from the host. For the LAN side, we assigned it the address of 192.168.99.2. This will be the new
default gateway for all devices placed within VMNet 12. For the last adapter, we did not assign any
addresses, as Suricata will use this adapter in promiscuous mode to monitor the network traffic. After
the network configuration was completed, we were able to access pfSense’s Web GUI from the host
machine.

After entering the credentials we configured during the installation of pfSense, we immediately
updated pfSense to version 2.8.1. Once the update was complete, we took a snapshot of the virtual
machine to serve as a backup in case we would need to revert the virtual machine at any time. We then
enabled the DHCP server on pfSense to handle allocating IP addresses to any devices that we would
connect to VMNet 12. Once that was completed, we could then begin creating the web application
server virtual machine. See Figure

2.1.1 Web Application Server

To install a web application server in our virtualized lab environment, we first need to know how we
would plan on exploiting it. Rather than designing our own platform to test attacks on, we chose
a solution that requires less time to build. We opted to install Damn Vulnerable Web Application
(DVWA). DVWA is a purpose-built web application server that is designed to be vulnerable to many
different exploits (Wood, 2025). DVWA has a web interface that we can access using the IP address
of the virtual machine on which it is installed. DVWA contains many different attack vectors that
can be exploited in our lab environment (Wood, 2025). Some of the more prominent ones are SQL
Injection, Cross-Site Scripting (XSS), and brute-forcing the admin panel (Wood, 2025). This web
application will allow us to test many different exploits in the hopes that Suricata will detect the
attacks being executed.

Installing DVWA was rather simple in practice. We first created an Ubuntu virtual machine
within our VMware Workstation Environment. We gave it 4 CPU cores, 8 GB of RAM, and
a 64 GB hard disk. This gives the virtual machine more than enough resources to run DVWA.
Next, we ran through the GUI installation of Ubuntu, creating a user account and the hard-disk
partition. After Ubuntu was installed, we restarted the virtual machine and ensured that it had
network connectivity. The virtual machine grabbed an IP address of 192.168.99.100 from the
pfSense DHCP server. Next, we updated the packages to their latest version using sudo apt
update && sudo apt upgrade -y. We also made sure to install Open-VM-Tools with the com-
mand sudo apt install open-vm-tools-desktop -y && sudo systemctl enable -now
open-vm-tools-desktop to ensure that the virtual machine had no compatibility problems with
VMware Workstation. We followed up those commands by running sudo reboot now to restart the
virtual machine.

After the virtual machine was rebooted, we could proceed with our installation of DVWA. We first
grabbed the unofficial installation script from the DVWA GitHub repo and ran it. This script automat-
ically installed DVWA with all of the prerequisites required. After installation was successful, we
copied the configuration files by navigating to Apache’s web directory, then the DVWA’s subdirectory,
and then issuing this command cp config/config.inc.php.dist config/config.inc.php.
We then issued sudo systemctl restart apache?2 to restart DVWA to allow it to restart with
the correct configuration files. After the Apache web server was restarted, we navigated to the DVWA
web page http://192.168.99.100/DVWA and were able to log in using the default credentials of
admin and password. See Figure 3]

2.1.2 Suricata Configuration

Once the installation of DVWA was completed, we proceeded with the installation of Suricata onto
our pfSense virtual machine. Suricata’s installation was extremely simple. We navigated to the
web GUI of pfSense’s Package Manager and installed the Suricata package. After the package was
installed. We configured Suricata by first enabling the rules we wanted to include. We chose to enable
the Emerging Threats open-source ruleset and Snort’s free ruleset for registered users. It is important
to mention that for Snort’s ruleset, we did have to input our license key into the Suricata configuration
page. After that was completed, we configured the interface we wanted Suricata to listen to. We
chose to have it listen on OPT1, which is the unused network adapter we added within the virtual
machine configuration of VMware Workstation. We chose this adapter since Suricata places the
adapter in promiscuous mode to listen to traffic on the entire network. Next, we ensured that Suricata
was using its IDS mode rather than its IPS mode, as we did not want to start blocking network traffic
immediately if we had a misconfiguration. This completed the configuration of Suricata, and we
enabled Suricata within that network interface and started the service.

2.1.3 Exploited Attack Vector

After installing Suricata and DVWA, we are almost ready to start seeing if Suricata will detect threats.
However, we must first install a Kali Linux virtual machine within our virtualized lab environment.
Having a Kali Linux VM will allow us to test a multitude of attacks against DVWA. To install Kali
Linux, we must first create a virtual machine within VMware Workstation, then we assigned it 4 CPU
cores, 8 GB of RAM, and a 64 GB hard disk. Next, we follow the GUI installation and create a user
account. We chose the default choices and continued with the installation. Once Kali was finished
installing, we rebooted the system. Once Kali was restarted, we logged in and made sure we had

internet connectivity. Kali grabbed an IP address of 192.168.99. 103 from our pfSense DHCP server.
We updated all packages using sudo apt update && sudo apt upgrade -y. We also made sure
to install Open-VM-Tools with the command sudo apt install open-vm-tools-desktop -y
&& sudo systemctl enable -now open-vm-tools-desktop within both our Kali Linux VM
and our Ubuntu VM. After those commands were completed, we restarted the Kali Linux VM. At
this point, we had everything we needed to start testing Suricata’s capabilities. We had the lab
environment, the web application server, and the tools necessary to exploit the web server. See

Figure[d
3 Discussion

Our first small attack we ran was a network scan of the DVWA host. This was completed by using
the command nmap -T4 -A -v 192.168.99.100. After a few seconds, NMAP returned results,
and we saw that port 80 was open. This is the port that DVWA was running on. Then, we looked
at the alerts section within the Suricata tab on pfSense, and we saw that Suricata had successfully
detected the port scan of DVWA. At this point, we were extremely excited as we had proven that our
lab environment was correctly configured and was working correctly. See Figure 5]

For our next attack against DVWA, we decided to test the functionality of Suricata in detecting DoS
attacks against DVWA. We decided to use the tool HPING3. HPING3 has many different options,
but we ultimately chose to use sudo hping3 -flood -p 80 -rand-source 192.168.99.100.
Almost immediately, we saw a slowdown when trying to access the pfSense website. Opening
Wireshark within the Kali VM, we could see the sheer amount of traffic flowing to the DVWA host.
When checking the alerts of Suricata, we could clearly see that Suricata had detected the DoS attack
from HPING3. See Figure [f| and Figure

For our last attack, we wanted to use an attack that would be commonly used within real-world
examples. For this reason, we chose to do a SQL Injection attack. Looking at DVWA’s documen-
tation, in order to perform a SQL Injection, we must input this command ?id=a’ UNION SELECT
"hello","ist815" ;- -&Submit=Submit # into the vulnerable search box within the DVWA site.
After inputting that command and waiting a few seconds, we realized that no alert was generated
even though we had seen alerts for previous attacks. After some troubleshooting, we figured out that
we had to do two things. First, we had to make sure that HTTP traffic analysis was enabled within
our Suricata configuration for interface OPT1. After changing this setting, we ran the test again and
still did not receive an alert. However, after checking the EVE.json file, we saw the SQL injection
attack being observed from Suricata. This led us to believe that Suricata and our configured rules did
not align with the attack being executed. To solve this problem, we wrote our own rules to detect the
attack being used against DVWA. After writing the rules, we ran the attack again and noticed that
Suricata detected an alert for our SQL Injection within DVWA. This was a major achievement for
this research project. See Figure [§|and Figure[9]

After the previous successful attack, we wanted to adapt the attack into an attack that you would see be-
ing utilized out in public. We wanted to stick with SQL Injection, but automate the attack to try for dif-
ferent injection techniques. To do this, we used SQLMAP within our Kali Linux VM. We crafted and
issued the command sqlmap -u "http://192.168.99.100/DVWA/vulnerabilities/sqli/"
-data="id=1&Submit" -level=3 -risk=2 -batch. After switching tabs to the Suricata alerts
page, we were glad to see that the attacks were being detected and alerted. We also noticed that since
SQLMAP was using common injection techniques from previous CVEs. Our rulesets, ET-OPEN
and Snort’s Registered-User list, detected the attacks by default with no modification. See Figure [0}

Figure|[T1] and Figure[12]

4 Conclusion

It is important to note that an IDS or IPS is not a catch-all system. Cyberattacks can still occur
within your organization’s network and bypass the IDS or IPS detection rules. The threat landscape
is constantly changing, and the overall intrusion detection process must be kept up to date to battle
these attacks. Your organization should not rely on just one defensive measure against cyberattacks.
There should be multiple layers of security that give your organization the best possible chance to
withstand these intricate cybersecurity events.

References

Agarwal, N., & Hussain, S. Z. (2018a). A closer look at intrusion detection system for web applica-
tions. Security and Communication Networks, 2018, 9601357. https://doi.org/10.1155/2018/
9601357

Agarwal, N., & Hussain, S. Z. (2018b, May 28). Identification of flaws in the design of signatures for
intrusion detection systems. https://doi.org/10.48550/arXiv.1805.10848

Ahmad, A., Hadgkiss, J., & Ruighaver, A. B. (2012). Incident response teams — challenges in
supporting the organisational security function. Computers & Security, 31(5), 643-652.
https://doi.org/10.1016/j.cose.2012.04.001

Albin, E., & Rowe, N. C. (2012). A realistic experimental comparison of the suricata and snort
intrusion-detection systems. 2012 26th International Conference on Advanced Information
Networking and Applications Workshops, 122—-127. https://doi.org/10.1109/WAINA.2012.29

Alzahrani, A., Alqazzaz, A., Zhu, Y., Fu, H., & Almashfi, N. (2017). Web application security
tools analysis. 2017 ieee 3rd international conference on big data security on cloud (big-
datasecurity), ieee international conference on high performance and smart computing

(hpsc), and ieee international conference on intelligent data and security (ids), 237-242.
https://doi.org/10.1109/BigDataSecurity.2017.47

Barrett, M. P. (2018). Framework for improving critical infrastructure cybersecurity version 1.1.
NIST. Retrieved November 7, 2025, from https://www.nist.gov/publications/framework-
improving-critical-infrastructure-cybersecurity-version- 1 1

Boukebous, A. A. E., Fettache, M. 1., Bendiab, G., & Shiaeles, S. (2023). A comparative analysis
of snort 3 and suricata. 2023 IEEE IAS Global Conference on Emerging Technologies
(GlobConET), 1-6. https://doi.org/10.1109/GlobConET56651.2023.10150141

Day, D. J., & Burns, B. M. (2011). A performance analysis of snort and suricata network intrusion
detection and prevention engines. https://personales.upv.es/thinkmind/dl/conferences/icds/
icds_2011/icds_2011_7_40_90007.pdf

Dfiaz-Verdejo, J., Mufioz-Calle, J., Estepa Alonso, A., Estepa Alonso, R., & Madinabeitia, G. (2022).
On the detection capabilities of signature-based intrusion detection systems in the context of
web attacks. Applied Sciences, 12(2), 852. https://doi.org/10.3390/app 12020852

Einy, S., Oz, C., & Navaei, Y. D. (2021). The anomaly and signature-based IDS for network security
using hybrid inference systems. Mathematical Problems in Engineering, 2021, 6639714.
https://doi.org/10.1155/2021/6639714

Fekolkin, R. (2015). Intrusion detection and prevention systems: Overview of snort and suricata.
Retrieved November 7, 2025, from https://www.researchgate.net/publication/297171228 |
Intrusion_Detection_and_Prevention_Systems_Overview_of_Snort_and_Suricata

Hylender, C. D., Langlois, P., Pinto, A., & Widup, S. (2025). 2025 data breach investigations report.
Verizon Business. Retrieved October 10, 2025, from https://www.verizon.com/business/
resources/T4a/reports/2025-dbir-data-breach-investigations-report.pdf

International Organization for Standardization. (2022a). Information security, cybersecurity and
privacy protection — information security controls (ISO/IEC 27001:2022). https://www.is0|
org/standard/82875.html

International Organization for Standardization. (2022b). Information security, cybersecurity and
privacy protection — information security management systems — requirements (ISO/IEC
27002:2022). https://www.1so.org/standard/75652.html

Khan, S., & Motwani, D. (2017). Implementation of IDS for web application attack using evolutionary
algorithm. 2017 International Conference on Intelligent Computing and Control (12C2),
1-5. |https://doi.org/10.1109/12C2.2017.8321956

Leblond, E. (2021, June 7). Suricata: The first 12 years of innovation. Stamus Networks. Retrieved
November 15, 2025, from https://www.stamus-networks.com/blog/suricata- the-first- 12-
years-of-innovation

https://doi.org/10.1155/2018/9601357
https://doi.org/10.1155/2018/9601357
https://doi.org/10.48550/arXiv.1805.10848
https://doi.org/10.1016/j.cose.2012.04.001
https://doi.org/10.1109/WAINA.2012.29
https://doi.org/10.1109/BigDataSecurity.2017.47
https://www.nist.gov/publications/framework-improving-critical-infrastructure-cybersecurity-version-11
https://www.nist.gov/publications/framework-improving-critical-infrastructure-cybersecurity-version-11
https://doi.org/10.1109/GlobConET56651.2023.10150141
https://personales.upv.es/thinkmind/dl/conferences/icds/icds_2011/icds_2011_7_40_90007.pdf
https://personales.upv.es/thinkmind/dl/conferences/icds/icds_2011/icds_2011_7_40_90007.pdf
https://doi.org/10.3390/app12020852
https://doi.org/10.1155/2021/6639714
https://www.researchgate.net/publication/297171228_Intrusion_Detection_and_Prevention_Systems_Overview_of_Snort_and_Suricata
https://www.researchgate.net/publication/297171228_Intrusion_Detection_and_Prevention_Systems_Overview_of_Snort_and_Suricata
https://www.verizon.com/business/resources/T4a/reports/2025-dbir-data-breach-investigations-report.pdf
https://www.verizon.com/business/resources/T4a/reports/2025-dbir-data-breach-investigations-report.pdf
https://www.iso.org/standard/82875.html
https://www.iso.org/standard/82875.html
https://www.iso.org/standard/75652.html
https://doi.org/10.1109/I2C2.2017.8321956
https://www.stamus-networks.com/blog/suricata-the-first-12-years-of-innovation
https://www.stamus-networks.com/blog/suricata-the-first-12-years-of-innovation

Lifian-Acosta, B., Bazalar-Gonzales, O., & Santisteban, J. (2025). Frameworks for cyberattack
prevention: A comparative analysis. 2025 International Conference on Artificial Intelligence,
Computer, Data Sciences and Applications (ACDSA), 1-5. https://doi.org/10.1109/
ACDSA65407.2025.11166447

Manev, P. (2021). Scaling suricata for enterprise deployment. Stamus Networks. Retrieved November
15, 2025, from https://www.stamus-networks.com/hubfs/Whitepapers/StamusNetworks-
WP-ScalingSuri-092021-1.pdf

National Institute of Standards and Technology. (2024, February 26). The NIST cybersecurity frame-
work (CSF) 2.0 (NIST CSWP 29). National Institute of Standards and Technology. Gaithers-
burg, MD. https://doi.org/10.6028/NIST.CSWP.29

Open Information Security Foundation. (2024, November 13). Our story. Suricata. Retrieved Novem-
ber 15, 2025, from https://suricata.io/our-story/

Open Information Security Foundation. (2025, November 6). Suricata’s latest features. Suricata.
Retrieved November 15, 2025, from https://suricata.io/features/

Raharjo, D. H. K., Nurmala, A., Pambudi, R. D., & Sari, R. F. (2022). Performance evaluation
of intrusion detection system performance for traffic anomaly detection based on active
IP reputation rules. 2022 3rd International Conference on Electrical Engineering and
Informatics (ICon EEI), 75-79. https://doi.org/10.1109/IConEEI55709.2022.9972298

Robinette, D. (2024, January 15). Is suricata an IPS or IDS? Stamus Networks. Retrieved November
15, 2025, from https://www.stamus-networks.com/blog/is-suricata-an-ips-or-ids

RS, G. (2024, August 8). Guide to suricata: Network security, IDS, IPS, and NSM. Devzery. Retrieved
November 15, 2025, from https://www.devzery.com/post/guide- to- suricata- network -
security-ids-ips-and-nsm:

Scarfone, K., & Mell, P. (2007, February 20). Guide to intrusion detection and prevention sys-
tems (IDPS) (NIST Special Publication (SP) 800-94). National Institute of Standards and
Technology. https://doi.org/10.6028/NIST.SP.800-94

Snort Team. (2025). Network intrusion detection & prevention system. Snort. Retrieved November
15, 2025, from https://www.snort.org/

Stock, A. v. d., Glas, B., Smithline, N., & Gigler, T. (2021). OWASP top ten. OWASP Foundation.
Retrieved November 7, 2025, from https://owasp.org/www-project-top-ten/

Taqiyuddin Ali, M. (2025). Evaluation of ISO/IEC 27001 framework implementation for information
security in organizations: A systematic literature review. Retrieved November 7, 2025, from
https://www.researchgate.net/publication/393090821 _Evaluation_of ISOIEC_27001_
Framework Implementation_for_Information_Security_in_Organizations_A_Systematic_
Literature_Review

The Zeek Project. (2020, February 20). About zeek. Zeek. Retrieved November 15, 2025, from
https://zeek.org/about/

Thongkanchorn, K., Ngamsuriyaroj, S., & Visoottiviseth, V. (2013). Evaluation studies of three
intrusion detection systems under various attacks and rule sets. 2013 IEEE International
Conference of IEEE Region 10 (TENCON 2013), 1-4. https://doi.org/10.1109/TENCON.
2013.6718975

Waleed, A., Jamali, A. F., & Masood, A. (2022). Which open-source IDS? snort, suricata or zeek.
Computer Networks, 213, 109116. https://doi.org/10.1016/j.comnet.2022.109116

White, J. S., Fitzsimmons, T., & Matthews, J. N. (2013). Quantitative analysis of intrusion detection
systems: Snort and suricata. Cyber Sensing 2013, 8757, 10-21. https://doi.org/10.1117/12
2015616

Wojtas, G. (2025, November 6). Suricata deep dive: What it is, how it works, and why it matters.
Retrieved November 15, 2025, from https://library.nagios.com/techtips/suricata-deep-dive-
what-why-how/

Wood, R. (2025, November 15). Damn Vulnerable Web Application (DVWA). Retrieved November
15, 2025, from https://github.com/digininja/DVWA

https://doi.org/10.1109/ACDSA65407.2025.11166447
https://doi.org/10.1109/ACDSA65407.2025.11166447
https://www.stamus-networks.com/hubfs/Whitepapers/StamusNetworks-WP-ScalingSuri-092021-1.pdf
https://www.stamus-networks.com/hubfs/Whitepapers/StamusNetworks-WP-ScalingSuri-092021-1.pdf
https://doi.org/10.6028/NIST.CSWP.29
https://suricata.io/our-story/
https://suricata.io/features/
https://doi.org/10.1109/IConEEI55709.2022.9972298
https://www.stamus-networks.com/blog/is-suricata-an-ips-or-ids
https://www.devzery.com/post/guide-to-suricata-network-security-ids-ips-and-nsm
https://www.devzery.com/post/guide-to-suricata-network-security-ids-ips-and-nsm
https://doi.org/10.6028/NIST.SP.800-94
https://www.snort.org/
https://owasp.org/www-project-top-ten/
https://www.researchgate.net/publication/393090821_Evaluation_of_ISOIEC_27001_Framework_Implementation_for_Information_Security_in_Organizations_A_Systematic_Literature_Review
https://www.researchgate.net/publication/393090821_Evaluation_of_ISOIEC_27001_Framework_Implementation_for_Information_Security_in_Organizations_A_Systematic_Literature_Review
https://www.researchgate.net/publication/393090821_Evaluation_of_ISOIEC_27001_Framework_Implementation_for_Information_Security_in_Organizations_A_Systematic_Literature_Review
https://zeek.org/about/
https://doi.org/10.1109/TENCON.2013.6718975
https://doi.org/10.1109/TENCON.2013.6718975
https://doi.org/10.1016/j.comnet.2022.109116
https://doi.org/10.1117/12.2015616
https://doi.org/10.1117/12.2015616
https://library.nagios.com/techtips/suricata-deep-dive-what-why-how/
https://library.nagios.com/techtips/suricata-deep-dive-what-why-how/
https://github.com/digininja/DVWA

A Background

An IDS is a software or service that can automate the manual intrusion detection process (Scarfone &
Mell, [2007). It has the ability to monitor and identify potentially harmful packets that are trying to
gain access to a specific web application or server (Scarfone & Mell,[2007). The IDS then usually
alerts the user of these identified incidents so that they can remedy them. The alerts can be configured
to output to numerous different types of platforms or services, including being stored within the syslog
file of the specific IDS that you are using. Using this method allows for different logging services to
interact with that syslog file and import it into other platforms (Scarfone & Mell,[2007). Commonly,
today we see the output of an IDS ingested into a Security Information and Event Management
(SIEM) system. This allows the cybersecurity professional to have a centralized location to see all of
the alerts within a potential organization (Scarfone & Mell,|[2007). However, to assemble and create a
log for cybersecurity professionals, the IDS must collect information from different areas of the web
application or server.

The information that is collected and stored within a log file varies due to what service the IDS is
protecting. The log file typically contains the date and time of when the alert occurred, the hostname
of the IDS service that is running, the IP address of both the source of the packet and the destination
of that packet, the port for both the source and destination IP addresses, and the designated threat level
of that attack. You might also see the protocol that is being used to launch an attack. For example,
if an HTTP web server is being attacked, you will see the HTTP protocol listed within the log file.
It is important to note that this output is non-standardized and can change between different IDSs.
A cybersecurity professional could also change many aspects of the output log file to match their
needs. In a lot of production environments today, we see the MITRE ATT&CK framework being
added to the log file. This addition helps the cybersecurity professional categorize the incident so that
they respond to more urgent incidents first. While an IDS detects incidents manually, an Intrusion
Prevention System (IPS) can alleviate some pressure on the responding cybersecurity professional.

An Intrusion Prevention System (IPS), like an IDS, is a software or service that can automate the
manual intrusion detection process, but unlike an IDS, the IPS attempts to prevent the attack from
being executed (Scarfone & Mell,|2007). Scarfone and Mell (2007) state that this could be done in
three ways: “terminate the network connection or user session that is being used for the attack, block
access to the target (or possibly other likely targets) from the offending user account, IP address,
or other attacker attribute or block all access to the targeted host, service, application, or other
resource” (p. 17). These automatic prevention methods will attempt to stop the attack or incident
from happening and potentially block the attacker’s source IP address so that they cannot attempt
the attack again (Scarfone & Mell, 2007). Since an IPS builds on the foundational principles of the
intrusion detection process, it is important to understand the detection methods that enable these
services to function.

There are three primary detection methods used within an intrusion detection system to detect these
cyberattacks: Signature-Based Detection, Anomaly-Based Detection, and Stateful Protocol Analysis
(Scarfone & Mell, 2007)). Signature-Based Detection, like the name suggests, uses a signature to
identify and categorize potential incidents. A signature is defined as “a pattern that corresponds to
a known threat” (Scarfone & Mell, 2007, p. 18). Signature-Based Detection is extremely useful
in a scenario where the attack vector has already been established and detected before. An IDS or
an IPS can pick up on the attack right away. However, a Signature-Based Detection does have its
downfalls. For example, if your organization is facing a tailor-made payload, then Signature-Based
Detection will have a difficult time recognizing it as the signature will be something that it has
never seen before. The Anomaly-Based Detection profiles the typical traffic of a web application or
server. Then, once an irregular event is detected, an alert is issued. Unlike Signature-Based Detection,
Anomaly-Based Detection is extremely good at detecting unknown threats. However, this detection
model can still have some downsides. For example, if you experience any sort of unusual traffic that
is not malicious in nature, it can be detected or even blocked. This could prevent end-users from
accessing the resources they need. Within different IDS or IPS systems, Stateful Protocol Analysis
can be referred to by different names. Some intrusion detection systems might refer to it as Mixed
Methods Detection or Deep Packet Inspection (Scarfone & Mell, 2007). The premise of this detection
method is that it identifies what the user is trying to achieve and ensures that the user’s task does
not go beyond the required scope for the operation. For example, within a File Transfer Protocol
(FTP) session, a user can transfer files between two different computers or servers. However, when

transferring, the user must authenticate with the receiving machine. If the user attempts to transfer a
file within unauthenticated sessions, the IDS or IPS will detect it as unusual behavior. It is important
to recognize that the different types of IDS or IPSs can change how these irregular events can be
detected.

There are multiple different ways an IDS or an IPS can be deployed within your organization’s
network, including: Network-Based, Wireless-Based, Network Behavior Analysis (NBA), and Host-
Based (Scarfone & Mell, 2007). A Network-Based intrusion detection system captures network
traffic moving within your network and analyzes it using detection methods. This type of device is
extremely useful when you are deploying a firewall and need a general layer of security. Usually,
other intrusion detection systems will be placed within your network. A Wireless intrusion detection
system, which is not used extensively today, monitors wireless traffic from Access Points (APs). In
most cases, this category of device is replaced with a Network-Based intrusion detection system.
NBAs are a category of device similar to a Network-Based IDS, but they are specialized in dealing
with large and unusual traffic flows (Scarfone & Mell, 2007). Lastly, Host-Based IDSs are deployed
within the web application servers to ensure that threats are detected and potentially prevented from
interfering with end-user abilities. It is important to note that Network-Based and NBAs are usually
placed at the firewall within a network topology, whereas a Wireless intrusion detection system is
deployed within a wireless controller, and Host-Based are deployed within the device you want to
protect.

When opting to implement an IDS or an IPS, you must first choose what brand of intrusion detection
system you want. There are multiple prominent IDSs on the market today. For enterprise solutions,
your organization might choose a solution from Palo Alto Networks or Cisco. For smaller-scale
networks, your organization might choose Snort or Suricata. It is important to note that enterprise-
scale offerings often use Snort or Suricata under the hood but have proprietary rulesets that give
them a market edge. For personal use, you might choose Fail2Ban. Choosing the right solution is
crucial, and you will have to evaluate your organization’s needs to pick the right one. In this research
project, we will be exploring Suricata as it will allow us to learn more about IDS and IPS systems in
production environments.

B Related Work

To achieve a deeper understanding of Intrusion Detection and Prevention Systems (IDPS), we must
conduct a literature review to examine previous research on this topic. This literature review examines
prior research on IDPS technologies, specifically Suricata, and their compliance with regulatory
frameworks and web application security best practices. This literature review will also look at
the inner workings of Suricata and the open-source and paid ruleset that make Suricata extremely
powerful against new cybersecurity threats. This literature review will help this research project
achieve the goal of evaluating how Suricata functions in real-world environments and assessing its
advantages and limitations within those environments.

B.1 Regulatory Standards

B.1.1 NIST Cybersecurity Framework (CSF)

The National Institute of Standards and Technology (NIST) Cybersecurity Framework (CSF) provides
a structured approach for mitigating cybersecurity threats within various organizations (Barrett, 2018},
National Institute of Standards and Technology,2024)). The CSF defines five core functions: Identify,
Protect, Detect, Respond, and Recover (National Institute of Standards and Technology, 2024). These
functions help establish a lifecycle for effective cybersecurity management (National Institute of
Standards and Technology, 2024). Within this structure, IDPSs, such as Suricata, support the Detect
and Respond phases. This is due to them being able to monitor traffic for attack vectors and generate
alerts for potential attacks (Fekolkin, 2015; Khan & Motwani, 2017} Scarfone & Mell, 2007). This
fulfillment of these functions gives the organization a definitive answer whether or not an IDPS would
be suitable for them within their network environment.

B.1.2 ISO/IEC 27001 and 27002

The ISO/IEC 27001 and 27002 standards define best practices for implementing an Information
Security Management System (ISMS) within organizations (International Organization for Standard-
ization, [2022a), 2022b). These standards showcase the importance of continuous monitoring, logging,
and event management, especially when dealing with important organizational data ((International
Organization for Standardization, |2022al [2022bj Lifian-Acosta et al., 2025)). Suricata can support
these actions through its alerting capability and due to its output within EVE.JSON. This file provides
a way for the logfile to be ingested into a Security Information and Event Management (SIEM) or
a data visualization platform like Grafana. Waleed et al. (2022) found that implementing Suricata
within a network environment can help the organization detect and monitor threats and network
trends. Suricata can serve as both a technical safeguard to meet ISO compliance within an organiza-
tion’s ISMS (International Organization for Standardization, |2022a} 2022bj; Taqiyuddin Ali, 2025}
Thongkanchorn et al., [2013]).

B.1.3 OWASP Framework

The Open Web Application Security Project (OWASP) defines standards for identifying and miti-
gating the most critical web application vulnerabilities (Stock et al.,[2021). This is defined within
OWASP’s Top 10 list (Stock et al., 2021). It is important to note that while OWASP primarily
provides information for software developers, the framework still provides valuable information
when designing detection rules for a Suricata implementation (Agarwal & Hussain, 2018a; Stock
et al., [2021). The Top 10 list provides an easy way to identify the most critical attack vectors to
monitor within a web application. Research by Diaz-Verdejo et al. (2022)) and Agarwal and Hussain
(2018a, |2018b)) indicates that using the OWASP vulnerability list within Suricata’s detection rules can
improve detection coverage and reduce false negatives. By doing this, Suricata can further protect
web application servers from the growing cybersecurity threats.

B.2 Intrusion Detection and Prevention Systems (IDPS)

B.2.1 Suricata Architecture

Suricata was developed as an open-source, multi-threaded IDS/IPS to help identify and potentially
block threats within a network environment (Waleed et al.,2022). Some previous research studies
showcase that Suricata often outperforms similar services such as Snort, Zeek/Bro, and Snort
(Boukebous et al.,|[2023} Day & Burns, 2011; Waleed et al.,[2022). This is especially true in scenarios
where the network is experiencing heavy throughput (Albin & Rowe, |[2012). This makes Suricata an
excellent choice when looking to implement an IDPS for a web application server, as it will not be
overloaded when network traffic hits all-time highs.

Additionally, Suricata supports parsing of specific network protocols such as HTTP, TLS, and DNS
(Agarwal & Hussain, 2018a; White et al.,[2013)). However, the detection accuracy of Suricata heavily
depends on the configuration and the rules assigned (Albin & Rowe, 2012; Diaz-Verdejo et al.,|2022;
Einy et al.,|2021} Raharjo et al., 2022; Thongkanchorn et al.,|2013)). Albin and Rowe (2012)) conducted
a research study showcasing that Suricata achieved a higher accuracy in detecting malicious traffic
over time compared to Snort. However, Snort maintained a higher network traffic flow compared to
Suricata (Albin & Rowe, 2012). Research findings like these showcase the capabilities of Suricata
when configured correctly. It is important to note that Suricata is not supposed to be the only line of
defense for web application servers.

B.2.2 Rulesets’ Management

Suricata’s performance and detection accuracy heavily rely on the implemented and defined rulesets
(Agarwal & Hussain, 2018bj; Day & Burns, 2011; Raharjo et al.,2022). It is important to note that
by default, Suricata has very limited abilities in detecting malicious threats, especially if they are
new to the cybersecurity industry. Agarwal and Hussain (2018b)) state that incomplete or redundant
rulesets can result in false positives and potentially undetected cyberattacks. Diaz-Verdejo et al.
(2022) found that using the Emerging Threats (ET) open-source rules may be able to detect complex
web application attacks. This problem alludes to the idea of using multiple rulesets, oftentimes
from different vendors. However, Raharjo et al. (2022)) showcased that implementing multiple rules
may increase detection rates, but it also reduces Suricata’s performance overall. When Suricata’s

performance decreases, the IDPS might not be able to keep up and will skip potentially malicious
packets. Being able to maintain the balance between detection accuracy and performance is an
extremely difficult task to manage for organizations and for security researchers.

B.3 Web Application Security

The cybersecurity industry is constantly evolving to protect network infrastructure against cyberattacks
(Ahmad et al.,2012). However, new cyberthreats are being developed, and web application servers
continue to be valuable targets for threat actors (Hylender et al.,2025). This is due to many websites
still continuing to use outdated and legacy code within important components (Alzahrani et al.,
2017; Diaz-Verdejo et al., [2022; Khan & Motwani, 2017). For example, attack vectors such as
SQL injection, cross-site scripting, and command injection are still widely exploited in production
environments today, even though the exploits have been around since the dawn of the internet (Stock
et al.,|2021). These exploits are also some of the common techniques threat actors use in order to gain
access to a web application (Stock et al.,2021). This is why Suricata can be used for the protection of
web application servers, as it can inspect the HTTP or HTTPS packets to ensure that these techniques
are not being used.

B.4 Overview of Existing Research

This literature review showcases the importance of Suricata being evaluated with cybersecurity
frameworks such as NIST, ISO/IEC, and OWASP standards. Additionally, it allows organizations to
implement a proven IDPS within their production network environment to prevent cyberattacks from
occurring on their web application servers. Suricata’s open-source architecture provides a proven
IDPS for organizations that want to implement a layered defense strategy. However, Suricata does
not come without its challenges, such as the ruleset performance degradation. Despite its proven
capabilities, this research project’s goal is to evaluate Suricata’s capability in protecting vulnerable
web application servers from common attack vectors.

C Suricata

As web applications continue to be a primary target for attackers, there is a growing need to evaluate
effective tools that can detect and prevent exploits at the network level. In order to stop them before
they can reach vulnerable web servers. We chose Suricata as the main focus for this research project
for this reason. Suricata is an open-source IDS/IPS system that is designed to protect network
infrastructure from growing cyberthreats (Open Information Security Foundation, |2025)). Suricata is
often chosen within enterprise environments for its speed, flexibility, and Deep Packet Inspection
capabilities, which make it perfect for detecting and preventing attacks against web application
servers (Open Information Security Foundation, [2025)). Suricata also has the ability to perform
multi-threaded packet analysis, protocol identification, and real-time intrusion prevention (Open
Information Security Foundation, 2025)). This allows for alerting of Network-Based threats in our
simulated lab environment (Open Information Security Foundation, 2025)).

The motivation behind this project is to evaluate Suricata’s ability to protect web application servers
against common attack vectors. Attacks such as SQL Injection attacks, Cross-Site Scripting (XSS),
and Distributed Denial of Service (DDoS) attacks all play a significant role in today’s cybersecurity
landscape (Hylender et al.,|2025)). This research paper ultimately aims to measure how well Suricata
performs in detecting, logging, and mitigating these threats. This will enable us to better understand
open-source security tools with regard to modern web application servers. By implementing Suricata
in a controlled, real-world lab environment, this research paper seeks to assess its detection accuracy,
performance efficiency, and practical usability.

C.1 History

Suricata was developed as an open-source next-generation IDS/IPS system under the support of the
Open Information Security Foundation (OISF) (Leblond, 2021} Open Information Security Founda-
tion, |2024, 2025). The OISF is a non-profit organization dedicated to improving the cybersecurity
industry’s network security monitoring and intrusion prevention techniques (Open Information Secu-
rity Foundation, 2024). According to the OSIF’s historical timeline, prototype work began around

10

2007 and early 2008, before the first public release of Suricata 1.0 in 2010 (Open Information Security
Foundation, [2024). This was when OISF was formally founded (Open Information Security Founda-
tion, 2024). OISF was initially funded in part by the U.S. Department of Homeland Security (DHS)
and by OISF consortium members (Open Information Security Foundation, 2024). Suricata’s and
OSIF’s mission is to always remain free and open source under GPL v2 licensing (Open Information
Security Foundation, [2024). This was made possible by the community involvement and vendor
support (Leblond, [2021; Open Information Security Foundation, [2024)). Over the years, Suricata has
advanced to support multithreading, file extraction, Deep Packet Inspection (DPI), and inline IPS
modes (Open Information Security Foundation, 2025). Suricata has evolved from purely detection to
a complete network security monitoring (NSM) system (Leblond, 2021)).

C.2 Other Enterprise IDS/IPS Solutions

There are several other open-source tools that are widely used in enterprise environments, such as
Snort 3 and Zeek. Snort is one of the most well-known IDS/IPS engines. It has an extensive rule base
and integrates with Cisco’s Talos threat intelligence feeds, which is one of its leading features (Snort
Team, |2025)). It supports both inline blocking and passive detection, allowing it to be integrated into
various types of network environments (Snort Team, 2025)). Due to it being around for a long time
and having a large community, it benefits from frequent rule updates to keep up with modern threats
(Snort Team, |2025)). This allows Snort to still be used as a Signature-Based detection engine (Snort
Team, 2025). Zeek takes a different approach. Rather than a Signature-Based IDS, Zeek primarily
functions as an NSM system (The Zeek Project,|2020). Instead of flagging threats through predefined
signatures, Zeek analyzes how services behave on the network (The Zeek Project,|[2020). This allows
Zeek to be well-suited for detecting threats that a Signature-Based IDS/IPS would miss (The Zeek
Project, 2020). These other open-source tools can complement or substitute for Suricata, depending
on whether the use case prioritizes Deep Packet Inspection or centralized analytics. However, when
used as a basic IDS/IPS, they all function similarly.

C.3 Detection Capabilities

One of the main reasons why you choose to implement Suricata is its vast detection capabilities.
Suricata is able to combine Signature-Based detection with automatic protocol identification and
Deep Packet Inspection (DPI) (Manev, 202 1; Open Information Security Foundation, |2025). This
allows Suricata to support a broad range of protocols, including HTTP, TLS, DNS, and SMB (Open
Information Security Foundation, [2025). Snort, however, retains its strong Rule-Based detection by
using Cisco Talos’s threat-intelligence feeds (Snort Team, [2025)). These feeds are widely used and are
an industry standard in enterprise environments (Snort Team, 2025)). Zeek takes a different approach.
Zeek uses Event-Driven Analysis rather than signatures (The Zeek Project, [2020). This provides
behavioral insight by recording detailed metadata about network sessions (The Zeek Project, 2020).
This is a major selling point of Zeek, which can help with anomaly detection and forensic correlation
(The Zeek Project, 2020).

C.4 Operational Complexity

Deploying Suricata at scale requires a lot of insight into how an organization will be using Suricata
within their daily operations. Although Suricata is open-source, it requires skilled network admin-
istrators and a significant time investment to implement correctly (Manev, 2021). Snort is easier
to maintain due to Cisco’s great documentation (Snort Team, |2025)). Snort can also be managed
through Cisco’s Firepower Management Center (Snort Team, 2025)). This allows for complete control
over every Snort deployment and allows for automatic rule updates (Snort Team, [2025)). Zeek’s
deployment is more complex due to its event-scripting language and log outputs (The Zeek Project,
2020). These outputs must be stored and categorized within a backend storage system such as
Elasticsearch or Splunk (Manev, 2021; The Zeek Project, [2020).

C.5 Recommended Deployment Scenarios
Choosing which IDS/IPS engine to implement in an enterprise environment is an important choice

to make. Suricata is best suited for organizations managing high amounts of traffic or requiring
low-latency processing (Manev, [2021; Open Information Security Foundation, 2025). It is a strong

11

choice when inline intrusion prevention, JSON telemetry export, and strong protocol parsing are
needed (Maneyv, 2021; Open Information Security Foundation, |2025)). However, Snort is an optimal
choice for enterprises that already rely on Cisco infrastructure (Snort Team, 2025)). Zeek excels
in environments prioritizing forensic analysis, network behavior analytics, and long-term traffic
monitoring (The Zeek Project, 2020).

D Comparative Analysis

In our Suricata lab, we are looking to make use of both Suricata’s intrusion detection and intrusion
prevention services (IDS/IPS). While these services may seem like they perform the same functions,
the main difference is that Suricata’s IDS is far more passive in its monitoring than its IPS (Robinette,
2024). Having an IDS or an IPS separate from one another can be useful in specific scenarios. In
our lab environment demonstration, we aim to showcase why that is the case and how these two
technologies can be used within a real-world environment.

In IDS mode, Suricata is able to monitor traffic coming in and out, and it compares traffic to pre-
defined rules and threats to determine if it is suspicious (Robinette, [2024; RS, 2024). While the
IDS will not actually prevent suspicious traffic, it will issue a clear alert that allows users to take
action (Robinette, 2024). Users are also able to create their own rules that can allow for specific
alerts (Robinette, 2024). Even though the IDS system is unable to react to suspicious data, there are
several advantages that it offers (Robinette, 2024). These include minimum network usage and more
visibility due to wider network monitoring (Robinette, 2024). Also, “in some regulations or security
policies, actively interfering with network traffic might be restricted” (Robinette, [2024). For this
reason, the non-intrusive aspect of passive monitoring offers could help address compliance concerns
(Robinette, 2024). While Suricata’s IDS system can provide many advantages, sometimes a little bit
of automated help can make the incident response process smoother, and this is where Suricata’s IPS
system can provide a solution (Robinette, [2024; Wojtas, 2025)).

Suricata’s IPS system offers a more active solution when it scans suspicious/malicious traffic, making
use of signature and anomaly-based detection, along with deep packet inspection to dive into the
actual contents of data packets (Robinette, 2024} RS, 2024). Unlike the IDS system, “Suricata is
deployed inline within the network, meaning that all traffic passes through it before reaching its
destination”, and can block/allow traffic within the network (RS, 2024). These functions can be
based on pre-configured rules, along with user-created rules as well (Robinette, [2024; RS, |2024;
Woijtas, 2025)). The active monitoring that the IPS system allows for has many advantages over the
IDS system. The most important of these advantages is the ability to drop malicious packets if need
be (Robinette, 2024} RS, [2024). Some other advantages include applying a limit to the rate of traffic
traveling to an IP address, preventing possible DDoS attacks, along with resetting connections that
may be transmitting suspicious activity (Robinette,|2024). Despite these advantages, the IPS also
contains a couple of disadvantages (Wojtas, 2025)). These include how the inline deployment could
lead to a break in the network if something goes wrong, as well as the possibility of overwhelming
the logging system to the point of being unable to find the most urgent errors (Wojtas, 2025)).

Both the IDS and IPS functionality of Suricata are needed in order to fully secure a network. While
the IDS can provide substantial transparency into possible malicious data and suspicious patterns, the
IPS is needed in order to automate some of the scanning and dropping, which could be mismanaged
otherwise due to human error (Robinette, [2024; RS, 2024} Wojtas, 2025). The IPS can help reset
connections by transmitting suspicious information, while the IDS could send alerts that allow users
to see which IPs are transmitting the packets (Robinette, |[2024; RS, [2024). A big part of what we hope
to show from our demo is how both the IDS/IPS systems Suricata offers can help secure networks in
different ways.

12

E Supplemental Figures

@ Virtual Network Editor X
Name Type External Connection Host Connection DHCP Subnet Address
VMnet0 Bridged Auto-bridging - - -
VMnetl Host-only - Connected Enabled 192.168.226.0
VMnet8 NAT NAT Connected Enabled 192.168.63.0
VMnet12 Host-only - Connected - 192.168.99.

Add Network... Remove Network Rename Network...

VMnet Information

(O Bridged (connect VMs directly to the external network)

Bridged to: Automatic Automatic Settings...

(O NAT (shared host's IP address with VMs) NAT Settings...

© Host-only (connect VMs internally in a private network)

Connect a host virtual adapter to this network
Host virtual adapter name: VMware Network Adapter VMnet12

() Use local DHCP service to distribute IP address to VMs DHCP Settings.

Subnet IP: | 192 .168 . 99 . 0 Subnet mask: | 255 .255 .255 . 0
Restore Defaults Import... Export... OK Cancel Apply Help

Figure 1: Network adapter settings for VMNet 12 within VMware Workstation

MUNITY EDITION

Status / Dashboard +0
System Information 00 Disks 00
Name pfSense.home.arpa Mount Used Size Usage
User admin@192.168.99.1 (Local Database) >/ 1.06 166 -
7% of 16G (zfs)
System VMware Virtual Machine
Netgate Device ID: 5abac44047f3de9117a4 Interfaces 00
BIOS Vendor: Phoenix Technologies LTD %2 WAN A 1000baseT <full-duplex> n/a
Version: 6.00
Release Date: Thu Nov 12 2020 §SeLAN 4> 1000baseT <full-duplex> 192.168.99.2
Boot Method: BIOS R OPT1 4 1000baseT <full-duplex> n/a
Version 2.8.1-RELEASE (amd64)

built on Fri Oct 24 11:53:00 EDT 2025
FreeBSD 15.0-CURRENT

Uptime 02 Hours 38 Minutes 10 Seconds
Current date/time Sun Nov 16 15:51:08 EST 2025
DNS server(s) « 1111

+ 8888
Last config change Sun Nov 16 15:51:02 EST 2025
Load average 0.32,0.32,0.33
CPU usage q

2%

Memory usage
56% of 1991 MiB

SWAP usage a
4% of 1024 MiB

pfSense Netgate. View license.

Figure 2: Dashboard view of the pfSense VM

13

[Home |
Instructions

Welcome to Damn Vulnerable Web Application!

Damn Vulnerable Web Application (DVWA) is a PHP/MySQL web application that is damn vulnerable. Its main
goalis to be an aid for security professionals to test their skills and tools in a legal environment, help web
by

Setup / Reset DB |

Brute Force
Command Injection
CSRF

File Inclusion

File Upload

Insecure CAPTCHA
SQL Injection

SQL Injection (Blind)
Weak Session IDs
XSS (DOM)

XSS (Reflected)

XSS (Stored)

CSP Bypass
JavaScript Attacks
Authorisation Bypass

Open HTTP Redirect |

ette rocesses of securing web applications and to aid both students & teachers to
learn about web application security in a controlled class room environment.

The aim of DVWA s to practice some of the most common web vulnerabilities, with various levels of
difficultly, with a simple straightforward interface.

General Instructions

Itis up to the user how they approach DVWA. Either by working through every module at a fixed level, or
selecting any module and working up to reach the highest level they can before moving onto the next one. There
is not a fixed object to complete a module; however users should feel that they have successfully exploited the
system as best as they possible could by using that particular vulnerabilty.

Please note, there are both and
intentional. You are encouraged to try and discover as many issues as possible.

with this software. This is

There is a help button at the bottom of each page, which allows you to view hints & tips for that vulnerability.
There are also additional links for further background reading, which relates to that security issue.

WARNING!

Damn Vulnerable Web Appl is damn Do not upload it to your hosting provider's public
html folder or any Internet facing servers, as they will be compromised. It is recommend using a virtual
machine (such as v). which is set to NAT networking mode. Inside a guest machine, you
can download and install for the web server and database.

Cryptography

API

DVWA Security
PHP Info
About

Logout

Di

We do not take responsibility for the way in which any one uses this application (DVWA). We have made the
purposes of the application clear and it should not be used maliciously. We have given warnings and taken
measures to prevent users from installing DVWA on to live web servers. If your web server is compromised via an
installation of DVWA it is not our responsibility it is the responsibility of the person/s who uploaded and installed it

More Training Resources

DVWA aims to cover the most commonly seen vulnerabilities found in today's web applications. However there
are plenty of other issues with web applications. Should you wish to explore any additional attack vectors, or want
more difficult challenges, you may wish to look into the following other projects:

Figure 3: Homepage view for the DVWA web application

administrator@al: ~

Session Actions Edit View Help

administratorakali

Figure 4: Desktop view of the Kali Linux VM

14

Services / Suricata/ Alerts (-}

Interfaces Global Settings Updates Alerts Blocks Files Pass Lists Suppress Logs View Logs Mgmt SID Mgmt

Sync P Lists

Alert Log View Settings

Instance to View (OPT1) OPT1 h

Choose which instance alerts you want to inspect

—

All alert log files for selected interface will be downloaded Clear the currently active Alerts log file

Save Settings Refresh 25 <
Save auto-refresh and view settings Defaultis ON Number of alerts to display. Default is
250

Alert Log View Filter (+]
Last 25 Alert Entries. (Most recent entries are listed first)

Date Action Pri Proto Class Src SPort Dst DPort GID:SID Description

11/16/2025 1 TCP Web Application Attack 192.168.99.101 36612 192.168.99.100 80 1:2024364 ET SCAN Possible Nmap User-Agent
16:00:11 X Observed

11/16/2025 1 TCP Web Application Attack 192.168.99.101 36608 192.168.99.100 80 1:2024364 ET SCAN Possible Nmap User-Agent
16:00:11 X Observed

11/16/2025 1 TCP Web Application Attack 192.168.99.101 36594 192.168.99.100 80 1:2024364 ET SCAN Possible Nmap User-Agent
16:00:11 Observed

11/16/2025 1 TCP Web Application Attack 192.168.99.101 36578 192.168.99.100 80 1:2024364 ET SCAN Possible Nmap User-Agent
16:00:11 Observed

11/16/2025 1 TCP Web Application Attack 192.168.99.101 36604 192.168.99.100 80 1:2024364 ET SCAN Possible Nmap User-Agent
16:00:11 X Observed

11/16/2025 1 TCP Web Application Attack 192.168.99.101 36566 192.168.99.100 80 1:2024364 ET SCAN Possible Nmap User-Agent
16:00:11 Observed

11/16/2025 1 TCP Web Application Attack 192.168.99.101 36592 192.168.99.100 80 1:2024364 ET SCAN Possible Nmap User-Agent

Figure 5: Alerts from Suricata for an NMAP scan

Analy: v s Help

RQewsmt i QQamm

Destination Protocol Length CNam
4561 67. 16899 e G0 [<None>] Seg=1 Win=512 Ler

4se1 67. 68.249.57 1168199, [<None>] Seq-1 Win=512 Len-0
4501 z o .39, B [<None>] Seq=1 Wi

4501... 67.. .176.51. .. [<None>] Seq:

ase1. 192.168.99. [<None>] Seq:

4s02. 67. 1156.167. 152.168.99. [<None>] Seq:

4502. z .44.200.9 192.168.99.. [<None>] Seq:

4502.. 67.490653 .39.94. 192.168.99. [<None>] Seq:

4502.. 67490700 192.168.99. [<None>] Seq:

4s02.. 67.490708 203,54, 152.168.99. [<None>] Seq:

4562.. 67.490751 .240.150. 192.168.99.. [<None>]

4502.. 67.490759 .219.62. 192.168.99. [<None>]

4502.. 67.490802 192.168.99. Seq:

4502.. 67.490809 113999, 152.168.99. seq

4s02.. 67.490852 \37.222. 152.168.99. seq

4502.. 67.490859 1168.17. 192.168.99. Seq=1

4502.. 67.490902 94, 192.168.99. Seq=1

4502 67.490910 227113, 152.168.99. seq

4s02.. 67.490953 135.36. 152.168.99. seq

4502.. 67.490961 1213.84. 192.168.99.

4s02.. 67.491013 192.168.99.

4s02.. 67.491022 ‘151,20, 152.168.99. seq

4502.. 67.491064 J191.102. 152.168.99. seq

4s02.. 67.491072 126.255. 192.168.99. seq

4502.. 67.491114 i 192.168.99. seq

4s02.. 67.491123 124693, 152.168.99. seq

4s02. 67.491166 87.99. 152.168.99. seq

4s02.. 67.491174 1149.54. 192.168.99. seq

4502, 67.491216 .74.220.9 192.168.99. Seq=1 Win=512 L
4s02.. 67.491225 119619, 152.168.99. Seqe1 Win-512
4s62.. 67.491277 136.179. 152.168.99. Seqe1 Win-512 L
4s02.. 67.491285 .77.245.68 192.168.99. seq

4502.. 67.491355 X ‘ 192.168.99. seq 512
4s02.. 67.491363 .171.87.94 152.168.99. seq 512
4502, 67.491411 1103.105. 152.168.99. Seq-1 Win-512
4502, 67.491419 14.194.95.166 192.168.99. Seq=1 i

4502 67.491468 __245.75.222.19 192.168.99.

Frane 369762 re (8: Ce\NPF_{D6E: 9 0 s 00 0c 29 ae E
Ethernet II, Sr re_ae:aa:a7 (00:0c 7 _co:00:0c (00:50:56:C0:00: 00 58 3
t

Internet 1 63
Transnission Control Py 14529, Ack e
Protocol

apter VMnet

Figure 6: Wireshark capture of a DoS attack from HPING3

15

Services / Suricata / Alerts (-]

Interfaces Global Settings ~ Updates Alerts Blocks ~ Files Passlists Suppress LogsView LogsMgmt SID Mgmt

Sync 1P Lists
Alert Log View Settings
Instance to View (OPT1) OPT1 v

Choose which instance alerts you want to inspect.

Save or Remove Logs

All alert log files for selected interface will be downloaded Clear the currently active Alerts log file
Save Settings Refresh 25 <
Save auto-refresh and view settings Default is ON Number of alerts to display. Default is
250

Alert Log View Filter [}
Last 25 Alert Entries. (Most recent entries are listed first)

Date Action Pri Proto Class Src SPort Dst DPort GID:SID Description

11/16/2025 2 TCP Misc 42.142.23.198 42949 192.168.99.100 80 1:2400003 ET DROP Spamhaus DROP Listed Traffic Inbound
16:01:47 Attack Q# group 4

11/16/2025 2 TP Misc 2423326160 42866 192.168.99.100 80 1:2400001 ET DROP Spamhaus DROP Listed Traffic Inbound
16:01:47 Attack & Q X group 2

11/16/2025 2 TCP Misc 42410 192.168.99.100 80 1:2400001 ET DROP Spamhaus DROP Listed Traffic Inbound
16:01:47 Attack group 2

11/16/2025 2 TP Misc 40307 192.168.99.100 80 1:2400041 ET DROP Spamhaus DROP Listed Traffic Inbound
16:01:47 Attack Q X group 42

11/16/2025 2 TP Misc 130.196.148.181 38832 192.168.99.100 80 1:2400022 ET DROP Spamhaus DROP Listed Traffic Inbound
16:01:47 Attack Qs Q X group 23

11/16/2025 2 TP Misc 138.125.19.23 38222 192.168.99.100 80 1:2400023 ET DROP Spamhaus DROP Listed Traffic Inbound
16:01:47 Attack Qs Q X group 24

11/16/2025 2 TP Misc 42.166.53.8 37802 192.168.99.100 80 1:2400003 ET DROP Spamhaus DROP Listed Traffic Inbound
LT . A e A~ e .

Figure 7: Alerts from Suricata for a DoS attack from HPING3

Services / Suricata/ Interface Settings / OPT1 - Rules (-]
Interfaces Global Settings Updates Alerts Blocks Files Pass Lists Suppress Logs View Logs Mgmt SID Mgmt

syne IP Lists

OPT1 Settings OPT1 Categories OPT1 Rules OPT1 Flow/Stream OPT1 App Parsers OPT1 Variables OPT1 IP Rep

Available Rule Categories

Category
custom.rules M

Select the rule category to view and manage.

Defined Custom Rules

slert http any any -> any any (nsg: "Possible SQL Injection attack (Contains singlequote)”; flow:established,to_server; content:"'"; nocase; http_uri; sid:1;)
alert http any any -> any any (nsg: "Possible SQL Injection attack (Contains UNION); low:established,to_server; content:™
alert http any any -> any any (msg: "Possible SQL Injection attack (Contains SELECT); flow:established,to_server; content:"select’; nocase; http_uri; sid:3;)

alert http any any -> any any (nsg: "Possible SQL Injection attack (Contains singlequote POST DATA)"; flou:established,to_server; content:"'"; nocase; http_client_body; sidi4;)
alert http any any -> any any (msg: "Possible SQL Injection attack (Contains UNION POST DATA)"; flow:established,to_server; content:"union”; nocase; http_client_body; sid:5;)
alert http any any -> any any (nsg: "Possible SQL Injection attack (Contains SELECT POST DATA)"; flow:established,to_server; content:"select”; nocase; http_client_body; sid:6;)

don”; nocase; http_uri; sid:2;)

Y.

Figure 8: Custom rules defined within Suricata for detecting a custom SQL Injection attack

16

Plisense

MMUNITY EDITION

Services / Suricata/ Alerts

Interfaces Global Settings Updates Alerts

Blocks Files Pass Lists Suppress Logs View Logs Mgmt SID Mgmt

Sync IP Lists
Alert Log View Settings
Instance to View (OPT1) OPT1 v

Choose which instance alerts you want to inspect

Save or Remove Logs

All alert log files for selected interface will be downloaded

Clear the currently active Alerts log file

Save Settings Refresh 250 z
Save auto-refresh and view settings Default is ON Number of alerts to display. Default is
250
Alert Log View Filter (+]

Last 250 Alert Entries. (Most recent entries are listed first)

Date Action Pri Proto
11/08/2025 3 TCP
00:29:07

11/08/2025 3 TCP
00:29:07

11/08/2025 3 TCP
00:29:07

11/08/2025 3 TCcP

00:28:50

11/08/2025 3 TCP

00:28:50

11/08/2025 3 TCcP

Class

Not Assigned

Not Assigned

Not Assigned

Not Assigned

Not Assigned

Not Assigned

Src SPort

192.168.99.1 46650
192.168.99.1 46650
192.168.99.1 46650
192.168.99.1 46645
192.168.99.1 46645
192.168.99.1 46645

Dst DPort GID:SID Description

192.168.99.100 80 Possible SQL Injection attack (Contains SELECT)
192.168.99.100 80 Possible SQL Injection attack (Contains UNION)
192.168.99.100 80 Possible SQL Injection attack (Contains singlequote)
32 168.99.100 80 Possible SQL Injection attack (Contains SELECT)
192.168.99.100 80 Possible SQL Injection attack (Contains UNION)
192.168.99.100 80 11

Possible SQL Injection attack (Contains singlequote)

Figure 9: Alerts from Suricata for a manual SQL Injection attack

[!] legal disclau
al laws. Develope
[*] start

9 @ 00:40:14 /2025-11-08/

got a 302 redirect to 'http://192.168.
redirect is a result of a POST request
not declared cookie(s), whi
Pt

s
testing if the target URL content

] POST parameter 'id' does not
NING] heuristic
] testing for SQL in
] testing 'AND

] AND be
AND

] testing 'AND

] testing b ean-b nc
] testing a
] testing

] testing

] testing

] testing

] testing

sole:

] testing
] testing
] testing
] testing
] testing
] testing '
] testing
] testing '
] testing
] testing '
] testing
] testing
] testing
] testing '

ean-based blind
5.0 boolean-b
5.0 boolean-ba:

“Micro: SQL s
Oracle

ING boolean-b:

L boole

AND

] testing connection to the target
68.99.100/DVWA/Login. php' .
Do you want

L boolean-basec

URL

to
s to se
is stable
appear to be

HERE
d blind
blind

5.0 boolean-based blind

d blind

d blind
boolean-b:
ORDER E
WHER

Usage of sqlmap for attacking targets without prior mutual consent is illegal. It is

assume no liability and are not responsible for any misuse or damage caused by this program

e dynamic
(basic) test shows that POST parameter

the end user's responsibility to obey all applicable local, state and fe

Do you want to follow? [Y/n] Y
resend original POST data to a new location? [Y/n] Y
its own ('security=impossibl,

HPSESSID=24225pj 79j0. . . {2408ec7tk’). Do you want to use those [Y/n] Y

might not be injectable

BY or GROUP BY clausi

original
original

lau:
lause

ORDI

(original

DRITHSX. SN
lau:

value)

value)

value)

lau
R BY clau

(FLOOR)
e (EXTRACT!
(UPDAT

LUE)"
ML)

Figure 10: Terminal view of SQLMAP running an automated SQL Injection attack

17

Destination
15082 5.291050 168.99.101 192.168 HITP 153 LSy me. gk L L S e p LR o s e o)
15083 5.291057 .168.99.100 192.168. 75

15084 5.291157 168.99.160 192.168

15085 5.291485 .168.99.100 192.168.

15086 5.291549 .168.99.100 192.168

15087 5.291601 .168.99.101 192.168.

15088 5.291735 .168.99.101 192.168.

15089 5.291858

15090 5.293582 i 3 .168.99.] Seqe1 AckeL Minssds1 L m PDU reassenbled in 15091]

15092 5.293717 -168.99. +168.99.101
15093 5.203824 ¥ 3 .168.99.101 TSval=4183733664 TSecr=1558892099
15094 5.294831 i 3 .168.99.101 HTTP/1.1 200 OK (text/htal)
15695 5.294968 i 5 99.101 3 B0 L LI WD I GBI e
15096 5.295009 .168.99. .168.99.100 (CK) Seq=495 Ack=020 Win: Len=0 TSval-1558892100 TSecr=41837
15697 5.295185 Y .168.99.100 b Tovaloassa89710n TSecr-4183733665
.59.161 Ac Sval-4183733666 TSecr=1558892101
99.100 41404 + 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval-1558892103 Tsecr=@ WS=1024
192.168.99.101 Ack=1 Win=65160 Len=0 MSS=1460 SACK_PERM TSval=4183733668 TSecr=1558892103 WS=128
192.168.99.100 c Ack /a1-1558892103 Tsecr=4183733668
15102 5.207523 .168.99. 192.168.99.100 , ACK] Seq= 512 Len=419 TSval=1558892103 TSecr=4183733668 [TCP PDU reassembled in 15163]
15103 5.297564 .168.99. 192.168.99.100 posT /DWn/vnlneramh(les/sqh/ mwn L e e)
15104 5.207599 .168.99. 192.168.99.101 Les val
15105 5.297705 .168.99. 192.168.99.101
15106 5.297986 ¥ 3 192.168.99.101
15107 5.298057 . y 192.168.99.101
15108 5.298101 .168.99.101 192.168.99.100
15109 5.298227 .168.99.101 192.168.99.100
15110 5.298359 .168.99.100 192.168.99.101
15111 5.300182 .168.99.101 192.168.99.100 [W S
.168.99.160 192.168.99.101 Ack: 558892106 Ws=128
« A

1168.99.101 192.168.99.100
168.99. 101 192.168.99.100 ket Mn-GAS12 Leneid? Toua1 1558992106 Toecro413733671 [TCP PDU reassesbled in 15115]
1168.99.101 192.168.99.100 POST /OVWA/login.php HTTP/1.1 (application/x-ww-form-urlencoded)

15116 5.300526 168.99.100 192.168.99.101 80 - 41414 [ACK) Seq-1 Ackedos Min-64768 Len-d TSval 4183733671 Tsecr-155asoaise

15117 5. 300704 1168.99.100 192.168.99.101 80 » 41414 [ACK] Seq=1 Ack

15118 5.301132 .168.99.101 192.168.99.100 41420 -+ 80 [SYN] Se«

on interf NPF_{DGECB64E-2809-40 od
b6 (00:0c:29:19:7¢:6) o

22 2f

P

[; Reassembled TCP Segments (494 bytes :revuuu‘ #15091(87)] 74 ¢

text Transfer Py 38,2

HTML Form URL Encodeds sppHication;x-iam-fora-urlencoded 2
)3SELECT SLEEP(S) AND ("eyZU" LIKE "

SLEEP(S) AND (“eyZU" LIKE “eyZ ~

Submit”

512532 32 25 32
25 32 30 53 4c 45 OK3BSELE
32 30 41 de 44 25
Value: Submit Sa 55 25 32 32 25 20X28%22
s 3232 65 79 5a 55 20LIKEX2 0%22ey2U

, Reassembled TCP (494 bytes)

Figure 11: Wireshark capture of an automated SQL Injection attack

Services / Suricata / Alerts ©
Interfaces Global Settings Updates Alerts Blocks Files Pass Lists Suppress Logs View Logs Mgmt SID Mgmt
Sync IP Lists
Alert Log View Settings
Instance to View (OPT1) OPT1 v

Choose which instance alerts you want to inspect.

Save or RemoveLogs |

All alert log files for selected interface will be downloaded Clear the currently active Alerts log file
Save Settings Refresh 25 <
Save auto-refresh and view settings Default is ON Number of alerts to display. Default is
250

Alert Log View Filter (+]
Last 25 Alert Entries. (Most recent entries are listed first)

Date Action Pri Proto Class Src SPort Dst DPort GID:SID Description

11/16/2025 1 TCP Web Application 192.168.99.101 56928 192.168.99.100 80 1:38993 SQL use of sleep function in HTTP header -
16:06:54 Attack likely SQL injection attempt

11/16/2025 1 TCP Web Application 192.168.99.101 56904 192.168.99.100 80 1:38993 SQL use of sleep function in HTTP header -
16:06:54 Attack likely SQL injection attempt

11/16/2025 1 TCP Web Application 192.168.99.101 56878 192.168.99.100 80 1:38993 SQL use of sleep function in HTTP header -
16:06:54 Attack X likely SQL injection attempt

11/16/2025 1 TCP Web Application 192.168.99.101 56868 192.168.99.100 80 1:38993 SQL use of sleep function in HTTP header -
16:06:54 Attack likely SQL injection attempt

11/16/2025 1 TCP Web Application 192.168.99.101 56916 192.168.99.100 80 1:38993 SQL use of sleep function in HTTP header -
16:06:54 Attack likely SQL injection attempt

11/16/2025 1 TCP Web Application 192.168.99.101 56894 192.168.99.100 80 SQL use of sleep function in HTTP header -
16:06:54 Attack Q likely SQL injection attempt

11/16/2025 1 TCP Web Application 192.168.99.101 56862 192.168.99.100 80 1:38993 SQL use of sleep function in HTTP header -
avnera et Am Am mo P —

Figure 12: Alerts from Suricata for an automated SQL Injection attack

18

F Windows Lab Environment Testing

In order to test Suricata installation on a Windows machine as opposed to a Linux machine, we
directly installed Suricata 8.0.1 onto a Windows laptop. To do this, we downloaded the latest versions
of both Npcap and Suricata. We then followed the installer instructions for both. Once both were
installed, we updated the suricata.yaml file with the correct network address of the target device
and installed all the necessary rulesets, including Emerging Threats ETOpen and Snort Subscriber
Free. To install ETOpen, we navigated to the Emerging Threats website and downloaded the latest
version of the ruleset. To install Snort’s free ruleset, we had to first register for an account, and then
we could download the latest version.

After the configuration of Suricata was complete, we proceeded with the preliminary testing of
Suricata’s IDS abilities. For this Suricata test within the Windows environment, we wanted to see
if everything was set up correctly first. To do this, we decided to simulate an ICMP flood using
Nping. Nping allowed us to simulate a small flood where no lasting damage would actually happen
to the target device. However, Nping would trigger the alerts within Suricata as if it were an actual
attack. We conducted this attack from a Ubuntu Linux VM set up on the Windows device. We started
Suricata using the command suricata -c suricata.yaml -i 192.168.89.15 -1 logon the
Windows Command Prompt. Next, on the Ubuntu Linux terminal, we initiated the attack using the
command nping -icmp -rate 1000 -count 400 192.168.89.15. Once we ran the attack, we
checked the alerts. json file on the Windows device, and we could see that Suricata had detected
the attack.

G IPS Lab Environment Testing

In this section, we look at Suricata’s capabilities as an IPS, specifically in a virtualized environment.
We will use VMWare Workstation Pro 17 as our virtualization platform to conduct the attack testing.
We opted to use a Ubuntu VM as the Suricata host machine and a Windows 10 VM as the victim.
This will allow us to attack the Windows VM with a Kali Linux VM using common attack methods,
such as ping sweep or even port scanning. The experiment will be conducted using three virtual
machines running within VMware Workstation Pro 17, where we have an Ubuntu VM configured as
the Suricata IPS host, a Kali Linux machine acting as the attacker, and a Windows VM acting as the
victim machine.

The three VMs will be placed in the same virtual network, VMNet 8. This will enable Suricata to see
all traffic within that network and inspect it for any threats. Suricata, in the IPS mode, will either
DROP or ALERT depending on whether the rulesets detect any malicious intent. The basic logical flow
for network traffic will be the following.

Kali (Attacker) — Ubuntu (Suricata IPS) — Target System

To achieve this lab environment for testing Suricata’s IPS capabilities, we must first ensure that
the VMSs can communicate with one another. Using the logical flow for the network traffic model,
we will configure the Ubuntu VM to act as the firewall to be able to intercept and route network
traffic. We set the virtual network adapter for all virtual machines to VMnet 8. This will allow each
VM to communicate with each other and the Internet as well. Additionally, to allow the Ubuntu
VM to act as the firewall, we had to enable IP forwarding with the command sudo sysctl -w
net.ipv4.ip_forward=1. Please see Table[I|to view the addressing for each virtual machine.

Table 1: Network Interface and Subnet Configuration for IPS Lab Environment

System Interface IP Address / Subnet
Ubuntu (Suricata IPS) ens33 192.168.158.128/24
Kali (Attacker) ethO 192.168.158.129/24
Windows (Target) Ethernet 192.168.158.130/24

After the IPS lab environment was configured, we proceeded with testing Suricata’s abilities for
blocking common attack methods. We tested both a ping sweep attack using PING and a port scan
using NMAP. After running both of these attacks, we noticed that Suricata did not alert or block the
ping sweep attack. However, Suricata did in fact detect the NMAP port scan. After looking at the

19

logs of Suricata, we noticed that Suricata did not have the ruleset to be able to detect the ping sweep
attack by default. After adding drop icmp any any -> any any (msg:"ICMP Drop Test";
$1d:1000001; rev:1;) into Suricata’s custom ruleset, Suricata blocked and alerted for both of
the attacks. From the Kali VM’s perspective, we can see that Suricata successfully blocked the
attacks due to the commands not being able to run on the victim VM’s IP address. In the logs of
Suricata, the alert messages showed that both attacks were blocked with the message ICMP Drop
Test and NMAP SYN Scan Blocked. These findings mean that Suricata, by default, did not have
the necessary means to be able to block the ping sweep attack. This is likely due to the ping sweep
attack not being categorized as a high-priority attack vector within the default ruleset. It is important
to remember that with the correct rulesets in place, Suricata has immense capabilities.

H Future Work

There are also multiple ways this project could be expanded upon in the future. More attacks could be
tested, and Suricata IPS mode could be evaluated. Implementing Suricata within a lab environment is
just the tip of the iceberg. During the planning phase of this project, we were planning on integrating
Suricata with Security Onion. This would give us a SIEM platform to receive visual alerts within one
central platform. However, we decided that we did not have enough time to integrate Security Onion
within our project.

I Lessons Learned

We learned a lot from this project, not only Suricata and how it works under the hood, but also indirect
information as well. We learned new Kali Linux tools that we can use in our upcoming classes
and our professional careers. We learned how attacks are classified using the MITRE ATT&CK
framework and how some attacks are prioritized to be triaged first rather than others, depending on
impact. We also learned valuable troubleshooting skills for Linux distributions. Choosing Suricata to
conduct this research project was a great choice!

20

	Introduction
	Methodology
	Lab Environment
	Web Application Server
	Suricata Configuration
	Exploited Attack Vector

	Discussion
	Conclusion
	Background
	Related Work
	Regulatory Standards
	NIST Cybersecurity Framework (CSF)
	ISO/IEC 27001 and 27002
	OWASP Framework

	Intrusion Detection and Prevention Systems (IDPS)
	Suricata Architecture
	Rulesets' Management

	Web Application Security
	Overview of Existing Research

	Suricata
	History
	Other Enterprise IDS/IPS Solutions
	Detection Capabilities
	Operational Complexity
	Recommended Deployment Scenarios

	Comparative Analysis
	Supplemental Figures
	Windows Lab Environment Testing
	IPS Lab Environment Testing
	Future Work
	Lessons Learned

